Product Design & Development

LGO interns interested in making something new can do an internship in product design and development. Projects in this category allow students to combine their engineering and MBA knowledge in a unique way to solve problems related to design, product implementation, and new supply chain systems.

Predictive Computational Modelling in Biologic Formulation Development

Jayanthi Jayakumar (LGO ’17)

Company: Amgen
Location: Thousand Oaks, CA

Problem: Amgen is a leading biotechnology company that creates protein therapies to treat severe diseases. To transform a disease-modifying protein into a drug that can be administered to patients, scientists need to develop it into a stable formulation. Excipients are inactive ingredients that perform various important functions in biologic formulation, including providing protein stability. However, identification of the correct excipients for optimum formulation development can often be time consuming and expensive. Jayanthi’s project uses advancements in computational biological modelling to evaluate its predictive role in biological formulation development.

Approach: Jayanthi began by identifying databases of compounds that could be tested computationally and experimentally as excipients. Then she worked with her mentors from Amgen and advisors from MIT to develop a high throughput method to computationally model a target protein and hundreds of potential excipients. Based on these results, she tested a sub-segment of these excipients in the wet-lab setting and compared them to the predicted outcomes from the computational model.

Impact: Amgen can use Jayanthi’s work as a starting point to develop predictive computational models that can be used in excipient selection for biological formulation development. This may ultimately save Amgen significant time and money. In addition, these models may help elucidate atomic level interactions between excipients and proteins, advancing the science behind formulation development.

Improving Performance using Glass Cartridge Silionization

Scott McArthur (LGO ’17)

Company: Sanofi
Location: Frankfurt, Germany

Problem: At Sanofi’s Site Frankfurt Insulin (SFI) and Site Frankfurt Devices (SFD), the company produces insulin delivery devices for patients with diabetes. Scott’s internship focused on glass cartridges, the primary packaging for insulin used in pen injection systems. Sanofi and Scott wanted to better understand the process of baked-in siliconization. When used in glass cartridges, the process is helpful for injectable pharmaceutical products. Scott’s project aimed to make the friction and lubrication characteristics of these cartridges more consistent, and therefore better performing for the patient. If these two variables are better controlled, current device will perform better, and other injection devices could result, ultimately improving patient experience.

McArthur_Sanofi_siliconization
Scott’s analysis helped Sanofi better understand a new injection manufacturing process.

Approach: Scott studied three specific processes. First, he studied the current state in the filling line characterization. Second, he looked at how friction force correlated to it and developed a recommended silicon profile. Finally, he conducted feasibility tests of atmospheric pressure plasma treatment. The results uncovered differences between different filling lines which led to recommended parameters that define a ‘good’ siliconization profile.

Impact: Scott’s recommendation, which is based off the data presented in the diagram pictured, has the potential to reduce variation in friction force performance by a factor 15. The next year’s LGO intern at Sanofi will use Scott’s results to focus optimize and standardize the siliconization profile across all filling lines in the facility.

Reducing New Product Development Time Using 3D Printing

Michael Sandford (LGO ’17)

Company: Johnson & Johnson
Location: Bridgewater, NJ

Product Design and Development Internship J&J
An example of a 3D printed medical devise at Johnson & Johnson.

Problem: The medical devices industry places great importance on speed to market in new product development. A short time to market means the product will have a longer sale lifetime and greater customer loyalty. Johnson & Johnson (J&J) is exploring additive manufacturing, or 3D printing, as a way to accelerate their product design and development process. Mike’s goals in this project were to reduce new product development cycle time and enable project teams to use 3D printing across J&J.

Approach: Mike developed a collaboration process to connect 3D printing experts in J&J with product development teams. These collaboration sessions (“blitzes”) resulted in many different ways to utilize technologies like metal 3D printing to create injection molds.

Impact: Thanks to Mike’s project, J&J utilized several promising 3D printing techniques to accelerate new product development. When he was able to engage projects early, Mike to accelerate launch substantially. All told, Mike’s recommended technical and business process changes show multi-million dollar potential for J&J.

Stealth Dicing to Enable Ultra-Thin Stacked Memory Die Assembly

Weng-Hong Teh (LGO ’15)

Company: SanDisk
Location: Shanghai, China

Problem: Memory packaging needs to be increasingly smaller, heterogeneous, and higher performing, while better dissipating heat. To address these challenges, one method assembles and stacks ultra-thin, high performance memory die. However, ultra-thin dies typically are usually more sensitive, resulting in more defects and decreased quality.

teh-image
The basic mechanism for stealth dicing

Approach: Weng Hong developed subsurface infrared (1.34 µm) nanosecond pulsed laser die singulation technology (stealth dicing) for next-generation 2-D NAND memory products. His project was the first comprehensive experimental study of stealth dicing technology, encompassing process physics and simulation, characterization, optimization, and integration.

The project successfully demonstrated defect-free eight-die (8D) stacks of 25µm thick non-functional memory dies and 46µm thick functional memory dies (64GB) for the first time. SanDisk has used his innovation to make production-worthy retail 64GB micro-SD memory cards. They can go to market after product quality and reliability testing.

Impact: The work is expected to save SanDisk millions of dollars. The company immediately began using the technology in production of memory products. Weng Hong won the Best Thesis Award in his graduating class.