Supply Chain

The LGO program has many ways to focus your MBA on supply chain management. There is a defined track within Civil and Environmental Engineering for students who want to dive deep into supply chain coursework. Students then have multiple companies who regularly offer internship projects on global supply networks, which allow students interested in supply chain management to work in the field before taking a leadership role after graduation.

Shipping Pricing for Build-to-Order Products

Carrie Beyer (LGO ‘17)

Company: Dell
Location: Austin, TX

MBA supply chain internship Dell
Carrie’s logic in building her optimization model

Problem:  Dell.com has uniform shipping pricing across Build To Order (BTO) notebook products. In October 2016, Dell launched a program to give customers more information and better shipping method choices. They asked Carrie to develop an optimization model that would recommend shipping prices to maximize the value for the company across three areas: customer experience, profitability, and working capital.

Approach: Carrie identified key variables within each area that would impact delivery. She concluded that price elasticity was an important variable for which little data was available. To collect this data, Carrie designed a price elasticity experiment to forecast demand at different price points. She used her results to develop a linear program optimization model to calculate optimal prices for each level of service.

Impact: Carrie’s model indicated opportunity to increase delivery value by 28%. To implement the project, Dell has scheduled necessary IT changes.

Predictive Modelling of High-Performance Factories

Albert Chan (LGO ’15)

Company: Li & Fung
Location: Hong Kong

Problem: The apparel industry is changing rapidly. Supply chains face faster development cycles, greater demands for environmental compliance, and lower prices. In such an environment, the ability to identify factories that can perform to exacting and evolving standards is a competitive advantage. With its network of more than 15,000 factories, Li & Fung wanted a way to use data analytics to support its sustainable sourcing process.

MBA supply chain internship Li and Fung
Albert’s analysis of Li & Fung’s factory operations.

Approach: Albert evaluated whether metrics in product quality, order delivery, and factory compliance are historically correlated with factory longevity and annual spend. He also identified inherent factory attributes that are predictive of quality, delivery and compliance performance. Albert created a list of key factory attributes, including past product performance (e.g., quality and delivery metrics), human capacity (e.g., leadership experience and specific roles), and factory characteristics (e.g., firm size, compliance scores, and financial strength). He concluded:

  • There is a direct relationship between product quality and long-term factory performance. To forecast quality performance, internal technical audits (initial evaluations performed on factories to gauge production readiness) appear to be a leading indicator of product quality.
  • Compliance scores are not consistently predictive. Optimal compliance level depends on business-specific needs and goals.
  • There is a tenuous connection between on-time delivery and annual spend. This is due to non-standardized definitions for on-time delivery.

Impact: Li & Fung plans to use these insights to begin aggregating the large amounts of data on factories and generating insights to support the development of a sustainable sourcing network.

Robust Network Design

Shi Ying (Ariel) Chua (LGO ’15)

Company: Caterpillar
Location: Peoria, IL

Problem: Caterpillar manufactures mining and construction equipment. Both of these industries are cyclical in nature, which impacts Caterpillar’s business. To be competitive, Caterpillar needs to make capacity decisions with the cycles in mind. In Caterpillar’s history, there have been times when there was demand overload and times when facilities are over capacity. Caterpillar asked Ariel to establish a framework that enhances investment decision-making within the two- to six-year capacity planning horizon.

MBA supply chain internship caterpillar
A decision-making framework for capacity planning

Approach: Ariel conducted a gap analysis and identified three major tactics to fulfill Caterpillar’s needs:

  • Ariel created an augmented demand forecasting framework using existing long-term forecasts and time series analysis using historical data.
  • She developed an investment option evaluation tool using Monte Carlo simulations that allows for variability across industry trends, market share, prices, and margins.
  • Finally, she introduced a multi-dimensional decision framework that captures the risk-return angle and Caterpillar’s corporate strategy goals.

Impact: The Caterpillar Production System team and corporate investment governance endorsed the framework. To implement the project, Caterpillar is collaborating with product groups to develop model parameters.

Amazon Prime Pantry Operations

Nupur Dokras (LGO ’17)

Company: Amazon
Location: Seattle, WA

Problem: Amazon’s Prime Pantry has recently shifted to provide more selection of small, everyday products. Amazon wanted a way to identify which products they should include in the Pantry line that would both maximize efficiency in delivery and minimize the products’ costs.

MBA supply chain internship Prime Pantry
Nupur’s modeling results

Approach: To identify which products to include, Nupur studied historical data on inbound profile, cubic volume, and demand. She created a dynamic model in which Amazon can enter product characteristics and view projected operational costs throughout the Prime Pantry network. The model uses minimum pallet quantities, shelf life, vendor lead times, and demand to determine how much inventory will be in the fulfillment center at a given time. Her analysis showed that the picking process costed the most of all steps in fulfillment. She conducted testing on this step, including splitting the process paths for lower and higher units.

Impact: Nupur’s dynamic model provided a cost breakdown and recommendations for order and storing inventory. Retail teams and Pantry sites now use this tool to manage inventory on a more granular level. Her new fulfillment solutions have been implemented across the Pantry network and has been successful in increasing the weekly profit for the business while decreasing variable cost per unit.

Rapid Supply Chain Strategy Simulation

Clararose Voigt (LGO ’16)

Company: Nike, Inc.
Location: Portland, OR

Problem: Nike is transitioning from a brick-and-mortar company to e-commerce, a significant change in its business model. The company has historically operated as a wholesaler, but they anticipate major growth in retail sales through Nike.com. Nike asked Clara to develop a proof-of-concept Strategic What-If Tool (SWIFT) for North American inventory, focusing on the digital market’s impact on product supply and demand.

MBA supply chain internship Dell
Clara’s supply chain simulation results.

Approach: Clara built a simulation tool that used adjustable parameters for variables like cancellation rates and Make-To-Order (MTO) vs. Make-To-Stock (MTS). Her results demonstrated that digital sales would create revenue growth but also increase liquidation. The significant factor was liquidation units increasing in Nike’s MTS business. While MTS allows Nike to be responsive to channel needs, it forces Nike to assume all inventory risk.

Clara tested two scenarios to develop a qualitative supply chain strategy. First, she increased Nike.com’s revenue CAGR 15%. Second, she increased MTS business by 10%. If Nike.com revenue CAGR increases more than 15%, marketplace units begin decreasing. Therefore, Clara recommended that Nike invest in a supply chain for premium customer service rather than capacity enhancements in a retail-driven marketplace.

Impact: Shifting NIKE’s business toward MTS increases liquidation units significantly. Therefore, if Nike wants to provide rapid response shipments, they should support that decision by investing in supply chains that effectively reduce liquidation risk such as time-to-market and lead-time reduction through on-shore/near-shore manufacturing.

Clara’s simulation established a framework that captures the interdependencies between Nike’s business channels. She helped Nike to rapidly test supply chain strategies within different revenue forecasts.