Engineering determinants of cost trends in energy systems

Jessika Trancik Engineering Systems Division, Massachusetts Institute of Technology

September 21, 2011 MIT LGO Operating Committee

Trancik Lab: Energy Systems

research areas:

- technology assessment
 - dynamics of change and influence of engineering characteristics
- technology design
 - for rapid improvement and scaling

 domains: electricity (e.g. solar, coal, wind) transportation (e.g. fuels, electrification) materials design 	 methods: statistical analysis of large datasets theory and modeling device physics networks optimization
	· · · · · · · · · · · · · · · · · · ·

GOal: accelerate the discovery and scaling of clean energy technologies.

Outline

technology assessment

coal-fired electricity

technology/system design

• role of design complexity in rate of improvement

Historical costs of coal-fired electricity and implications for the future

- why study coal?
 - basis of comparison for new technologies
- why a historical perspective (rather than make projections)?
 - valuable information on dynamics (as compared to static estimate of future best performance)
- why focus on decomposed costs?
 - cost determines adoption of energy technologies
 - different cost components may evolve differently

US coal-fired electricity: the last 125 years...

$$TC_{t} = OM_{t} + FUEL_{t} + CAP_{t}$$

= $OM_{t} + \frac{COAL_{t} + TRANS_{t}}{\rho_{t}\eta_{t}} + \frac{SC_{t} \times CRF(r_{t}, n)}{CF_{t} \times 8760 \text{ h}}.$ (1)

McNerney, Farmer, Trancik, Energy Policy, 2011

Shares of total cost: fuel and capital dominate

Cost of coal-stored energy

- Coal prices have fluctuated and shown no overall trend up or down
- We cannot rule out a random walk model
- This is consistent with expected behavior of a traded commodity (should not be possible to make easy arbitrage profits by trading it)

Fuel cost

$$TC_{t} = OM_{t} + FUEL_{t} + CAP_{t}$$

= $OM_{t} + \frac{COAL_{t} + TRANS_{t}}{\rho_{t}\eta_{t}} + \frac{SC_{t} \times CRF(r_{t}, n)}{CF_{t} \times 8760 \text{ h}}.$ (1)

Construction costs

- Plant construction costs follow long term trends (with noise)
- Decreasing until 1970
- Turning point in 1970 (in part due to pollution controls)

Historical costs of coal-fired electricity and implications for the future: conclusions

- fuel cost imposes a fluctuating floor on total cost of coal electricity
 greater variability in total costs over time
- qualitatively different behavior between coal (and other fossil fuels) and other energy technologies
 – should be considered in integrated assessment models
- technology versus commodity: effect on innovation dynamics

Comparison of (predictive ability) of functional forms for performance curves

1000

- prediction is uncomfortable but sometimes necessary
 - e.g. cost of mitigating climate change
- many proposals for predicting the future evolution of technologies
- which one performs best? how can we capture uncertainty?
- ~60 datasets (from energy and hardware to beer and chemicals)
- ~15 fcn forms, compared using a mixed effects statistical model...
- main conclusion: a tie between Moore and Wright (the two are indistinguishable because of exponential growth)

	Wright			Moore								
{q}	{q,e}	{q+e}	{e}	{t}	{t,q}	{t,q+e}	{q,qe}	{t,e}	{t,te}	{t,tq}	{e,qe}	
Transistor												
{q}	{q,e}	{q+e}	{e}	{t}	{t,q}	{t,q+e}	{q,qe}	{t,e}	{t,te}	{t,tq}	{e,qe}	
DRAM												
{q}	{q,e}	{q+e}	{e}	{t}	{t,q}	{t,q+e}	{q,qe}	{t,e}	{t,te}	{t,tq}	{e,qe}	
HDD												
{q}	{q,e}	{q+e}	{e}	{t}	{t,q}	{t,q+e}	{q,qe}	{t,e}	{t,te}	{t,tq}	{e,qe}	
Acrylonitrile												
{q}	{q,e}	{q+e}	{e}	{t}	{t,q}	{t,q+e}	{q,qe}	{t,e}	{t,te}	{t,tq}	{e,qe}	
Caprolactam												
{q}	{q,e}	{q+e}	{e}	{t}	{t,q}	{t,q+e}	{q,qe}	{t,e}	{t,te}	{t,tq}	{e,qe}	
Cyclohexane												
{q}	{q,e}	{q+e}	{e}	{t}	{t,q}	{t,q+e}	{q,qe}	{t,e}	{t,te}	{t,tq}	{e,qe}	
Ethanol												
{q}	{q,e}	{q+e}	{e}	{t}	{t,q}	{t,q+e}	{q,qe}	{t,e}	{t,te}	{t,tq}	{e,qe}	
Ethanolamines												
{q}	{q,e}	{q+e}	{e}	{t}	{t,q}	{t,q+e}	{q,qe}	{t,e}	{t,te}	{t,tq}	{e,qe}	
LaserDiode												
{q}	{q,e}	{q+e}	{e}	{t}	{t,q}	{t,q+e}	{q,qe}	{t,e}	{t,te}	{t,tq}	{e,qe}	
PolyesterFibers												
{q}	{q,e}	{q+e}	{e}	{t}	{t,q}	{t,q+e}	{q,qe}	{t,e}	{t,te}	{t,tq}	{e,qe}	
PolyethyleneHD												
{q}	{q,e}	{q+e}	{e}	{t}	{t,q}	{t,q+e}	{q,qe}	{t,e}	{t,te}	{t,tq}	{e,qe}	
PolyethyleneLD												
{q}	{q,e}	{q+e}	{e}	{t}	{t,q}	{t,q+e}	{q,qe}	{t,e}	{t,te}	{t,tq}	{e,qe}	
Solar												
{q}	{q,e}	{q+e}	{e}	{t}	{t,q}	{t,q+e}	{q,qe}	{t,e}	{t,te}	{t,tq}	{e,qe}	
WindTurbinesD												
{q}	{q,e}	{q+e}	{e}	{t}	{t,q}	{t,q+e}	{q,qe}	{t,e}	{t,te}	{t,tq}	{e,qe}	
WindTurbinesG												
{q}	{q,e}	{q+e}	{e}	{t}	{t,q}	{t,q+e}	{q,qe}	{t,e}	{t,te}	{t,tq}	{e,qe}	
OnshoreGasPipe												
{q}	{q,e}	{q+e}	{e}	{t}	{t,g}	{t,q+e}	{q,qe}	{t,e}	{t,te}	{t,tq}	{e,qe}	
OffshoreGasPipe												

. .

. . .

different data-sets

different functional forms

performance curve database: pcdb.santafe.edu

Outline

technology assessment

coal-fired electricity

technology/system design

• role of design complexity in rate of improvement

Role of design complexity in technology improvement

- simple model of innovation process
- incorporate effect of engineering design characteristics

Simple model of design or production

In addition, components depend on one another...

Inspiration from Muth, 1986 and Auerswald et al., 2000

McNerney, Farmer, Redner, Trancik, PNAS, 2011

Design structure matrix: fixed out-degree

d dependencies per component

Simulations

- 1. Pick a random component *i*.
- 2. Use the DSM to identify the set of components $\mathcal{A}_i = \{j\}$ whose costs depend on *i* (the outset of *i*).
- 3. Determine a new cost c'_j for each component $j \in \mathcal{A}_i$ from a fixed probability distribution f.
- 4. If the sum of the new costs, $a'_i = \sum_{j \in \mathcal{A}_i} c'_j$, is less than the current sum, a_i , then each c_j is changed to c'_j . Otherwise, the new cost set is rejected.

$$\begin{aligned} c &= c_1 + c_2 + c_3 + c_4 + c_5 + c_6 \\ c' &= c_1' + c_2 + c_3 + c_4' + c_5 + c_6 \\ c' &< c \to \text{accept changes} \\ c' &> c \to \text{keep old recipe} \end{aligned}$$

Design complexity and rate of improvement

$$c(x) \sim x^{-\alpha}$$
$$\alpha \sim \frac{1}{d}$$

Design structure matrix: variable out-degree

d - average number of dependencies per component

Bottlenecks form - d_i^{min}

Bottlenecks determine rate of improvement

 $d^*=max(d_i^{min})$

Next step - empirical relationships

$$c(x) \sim x^{-\alpha} \qquad \alpha \sim \frac{1}{d^*}$$

- Testable prediction:
 Component decoupling → faster cost reduction
- Design structure matrices (DSM)

Design Structure Matrix Map of a Laptop Computer

d	Progress Ratio 2^ (-1/d*)
1	50.0%
2	70.7%
3	79.4%
4	84.1%
5	87.1%
10	93.3%
20	96.6%
40	98.3%

Performance curves

Conclusions

- we can reproduce power function performance curve with a simple model
- relationships between components greatly affect rate of improvement
- bottlenecks can form, determining whether progress is steady

Interpretation of theory and future directions

- what does the theory tell us?
 - an effort-based model gives rise to an empirically observed regularity
 - lessons for technology investment
 - lessons for technology and engineering system design
- future developments applications?
 - design technologies for rapid future development
 - materials selection and design
 - model of networks of networks
 - infrastructure
 - supply chains

Materials optimization map: example photovoltaics

Students and postdocs

James McNerney (SFI and BU) Heshuang Zeng (MIT, DUSP) Shylesh Muralidhadan (MIT, ESD) Morgan Edwards (MIT, ESD) Dan Cross-Call (MIT, ESD) Postdoctoral fellow: Bela Nagy (SFI) Postdoctoral fellow: Hamed Ghoddusi (MIT)

Collaborators

Christof Teuscher (Portland State University) Doyne Farmer (Santa Fe Institute) Luis Bettencourt (Santa Fe Institute, LANL)

Funding

National Science Foundation Department of Energy, Center for Integrated Nanotechnologies Boeing Company Lockheed Martin New England University Transportation Center